12 C hemistry In society

Mark Dewar

1.Stoichiometry

2.EQUILIBRIUM

3.Le Chatelier's Principle

SOLIDS! CALCULATIONS

Mass

number of MOLES

Formula Mass

6

Concentration of solution

number of moles

Volume of solution

MV

Molar Volume (I mol-1)

Volume (litres)

number of MOLES

CHEMICAL EQUATIONS

STOICHIOMETRY

MEASURING CHEMICALS THAT GO INTO, AND COME OUT OF, ANY GIVEN REACTION.
 IN GREEK, MEANS "MEASURING ELEMENTS"
 ALLOWS US TO COUNT ATOMS AND MOLECULES BY WEIGHING THEM.

Mass of carbon dioxide produced when 10g of CaCO₃ is heated?

$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$

Mass of carbon dioxide produced when 10g of CaCO₃ is heated?

$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$

1 mole $CaCO_3 \rightarrow 1$ mole $CO_{2(g)}$

Mass of carbon dioxide produced when 10g of CaCO₃ is heated?

 $\begin{array}{c} CaCO_{3(s)} \xrightarrow{>} CaO_{(e)} + CO_{2(g)} \\ 1 \text{ mole } CaCO_3 \xrightarrow{>} 1 \text{ mole } CO_{2(g)} \\ 100g \ CaCO_3 \xrightarrow{>} 44g \ CO_{2(g)} \end{array}$

Mass

 $n = \frac{10g}{100}$ $= 0.1 \text{ moles of } CaCO_3$

Mass of carbon dioxide produced when 10g of CaCO₃ is heated?

$\frac{\text{CaCO}_{3(s)} \rightarrow \text{CaO}_{(s)} + \text{CO}_{2(g)}}{100g \text{CaCO}_3 \rightarrow 44g \text{CO}_{2(g)}}$

Mass

0.1 moles of $CaCO_3 \rightarrow$ 0.1 moles of CO_2

Mass of carbon dioxide produced when 10g of CaCO₃ is heated?

$\begin{array}{c} CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)} \\ 0.1 \text{ moles of } CaCO_3 \\ \rightarrow 0.1 \text{ moles of } CO_2 \end{array}$

EQUILIBRIUM BALANCE

EQUILIBRIUM EQUILBRIUM

In nature equilibrium works by finding a balance between animal population and food supplies available.

In chemistry equilibrium is a balance between products and reactants.

EQUILIBRIUM EQUILBRIU A reversible reaction: $HNO_2 \implies H^+ + NO_2^-$

Reactions are not straight forward reactions. Many reaction NEVER finish.

FORWARD REACTION REVERSE REACTION

Forward reaction → reactants turning into products

FORWARD REACTION REVERSE REACTION

Reverse reaction → products turning into reactants

EQUILIBRIUM STATE

WHEN A REACTION'S FORWARD PROGRESS (REACTANTS FORMING PRODUCTS) IS PERFECTLY BALANCED WITH THE REVERSE PROCESS (PRODUCTS CHANGING BACK INTO THE REACTANTS)

Reaction keep going back and forth till it reaches equilibrium state.

EQUILIBRIUM STATE

In a dynamic equilibrium, the rate of the forward reaction is equal to the rate of the back reaction. The concentration of the reactants and products remains constant but <u>not</u> necessarily equal.

$N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$

Haber process

LE CHATELIER'S PRINCIPLE IF A STRESS IS PLACED ON A SYSTEM AT EQUILIBRIUM, THE SYSTEM WILL PROCEED IN A DIRECTION THAT MINIMIZES THE STRESS.

How to manipulate the stress.

L CONCENTRATION

$N_2(g) + 3 H_2(g)$

If more H₂ is added?

CONCENTRATION

 $2 \operatorname{NH}_3(g)$

With higher
conc. of
reactant
the forward
reaction is
favored.

 $N_2(g) + 3 H_2(g)$

CONCENTRATION

$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

To get a high yield of product Haber continuously removed ammonia so reaction never reached equilibrium.

How to manipulate the stress.

2- PRESSURE

EQUILIBRIUM LE CHATELIER'S PRINCIPLE $1 N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$

4 moles of gas react to form two moles of gas. EQUILIBRIUM LE CHATELIER'S PRINCIPLE $1 N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

<text>

EQUILIBRIUM LE CHATELIER'S PRINCIPLE PRESSURE $1 \operatorname{N}_2(g) + 3 \operatorname{H}_2(g) \rightleftharpoons 2 \operatorname{NH}_3(g)$ Increasing the pressure puts more stress on the high volume reactants than the low volume products.

EQUILIBRIUM LE CHATELIER'S PRINCIPLE PRESSURE

Increasing the pressure pushes equilibrium to the right \rightarrow more product produced.

EQUILIBRIUM LE CHATELIER'S PRINCIPLE PRESSURE

Decreasing the pressure pushes pressure pushes equilibrium to the left ← more reactants produced.

How to manipulate the stress.

3. TEMPERATURE

EQUILIBRIUM LE CHATELIER'S PRINCIPLE TEMPERATURE **EXOTHERMIC REACTIONS** RELEASE HEAT.

Favored at lower temperatures.

LE CHATELIER'S PRINCIP

Time (reaction progress)

Exothermic reaction that releases heat

EQUILIBRIUM LE CHATELIER'S PRINCIPLE TEMPERATURE

ENDOTHERMIC REACTIONS CONSUME HEAT.

Favored if heat is added.

its surroundings in the form of heat.

QUESTIONS

 $SO_2(g) + 0.5O_2(g) \leftrightarrow SO_3(g)$ $\Delta H_{forward} = -94kJmol^{-1}$ Ideal conditions?

a) High pressure and low temperature
b) Low pressure and high temperature
c) High pressure and high temperature
d) Low pressure and low temperature

QUESTIONS

 $SO_2(g) + 0.5O_2(g) \leftrightarrow SO_3(g)$ $\Delta H_{forward} = -94kJmol^{-1}$ Ideal conditions?

a) High pressure and low temperature
b) Low pressure and high temperature
c) High pressure and high temperature
d) Low pressure and low temperature