C hemistry In society

Mark Dewar

¹⁶ O bjectives

1. MANUFACTURING

2. % YIELD

3. ATOM ECONOMY

4. LIMITING REACTANT

CHEMISTRY IN SOCIETY

Chemists constantly design new products in order to benefit society

CHEMISTRY IN SOCIETY

This has to be done with minimal waste and maximum profit

New Product Creation

There are many factors to be considered:

- Availability, sustainability and cost of feedstock
 - Recycling
 - Energy requirement
 - By-products
 - Product yield

What is a feedstock?

A feedstock is a reactant from which other chemicals can be extracted or synthesised.


What is a feedstock?

Feedstocks are derived from raw materials such as: water, crude oil and air.

E.g. NITROGEN and OXYGEN (feedstocks) can be extracted from air (raw material).

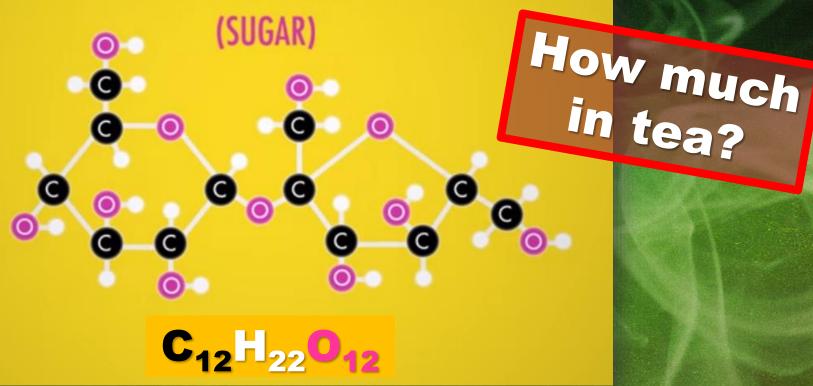
What is a raw material?

A raw material is a substance that is naturally occurring

New Product Creation

SCALING UP

Research and Development


Lab Process Pilot Plant

Production Plant

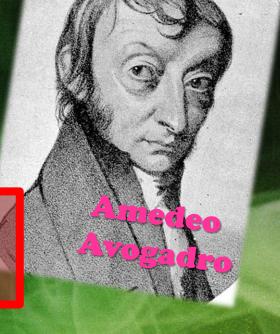
STOICHIOMETRY

- 1. MEASURING CHEMICALS THAT GO INTO, AND COME OUT OF, ANY GIVEN REACTION.
- 2. IN GREEK, MEANS "MEASURING ELEMENTS"
- 3. ALLOWS US TO COUNT ATOMS AND MOLECULES BY WEIGHING THEM.

ATOMIC STRUCTURE

MOLES

One mole of a substance is its gram formula mass (GFM).



INCLES Avogadro's Constant

One mole of a substance contains 6.02 x 10²³ formula units

MOLES

Avogadro's Constant = 6.02 x 10²³

molecules in 2moles of H₂
gas?

MOLES

Avogadro's Constant = 6.02 x 10²³

MASS

MOLES ATOMIC MASS

MOLES

MASS

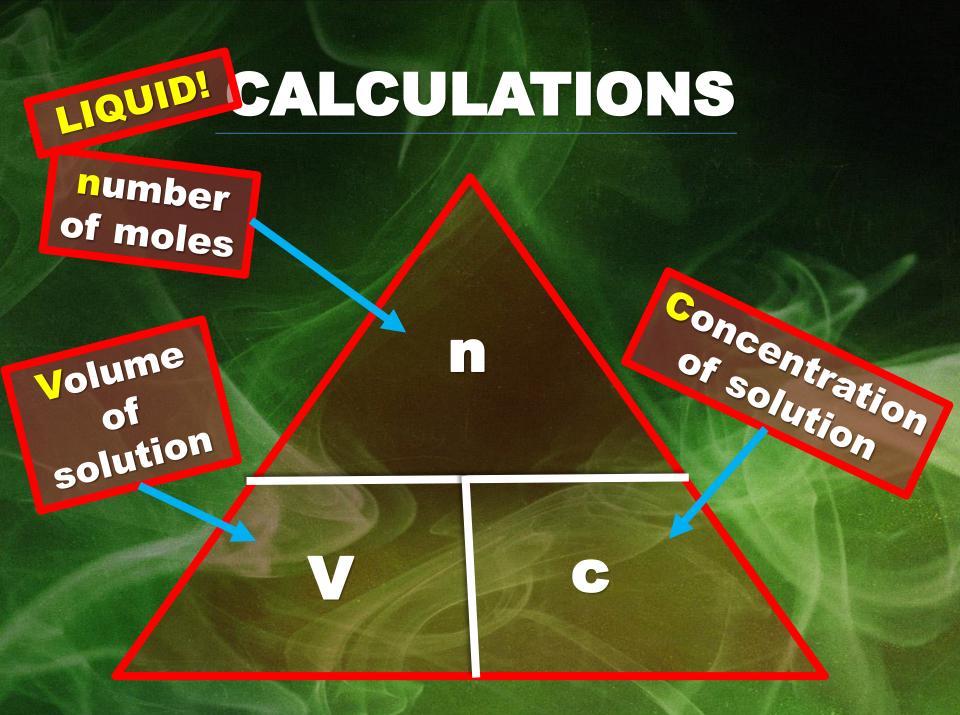
ATOMIC MASS

MASS

MOLES

MASS

MOLES & ATOMIC MASS


SOLIDS! CALCULATIONS

number of MOLES

Mass

Formula Mass

FM

GAS! CALCULATIONS Volume (litres) number of Molar Volume (I mol-1) MV

2NaOH + H₂SO₄ ------ Na₂SO₄ + 2H₂O

How much mass do we need of each?

2NaOH + H₂SO₄ ------ Na₂SO₄ + 2H₂0

2NaOH + H₂SO₄ ------ Na₂SO₄ + 2H₂0

MOLES

ATOMIC MASS

40 + 98 ----- > 142 + 18

```
2NaOH + H<sub>2</sub>SO<sub>4</sub> ------ Na<sub>2</sub>SO<sub>4</sub> + 2H<sub>2</sub>0
```

MOLES

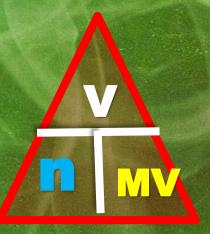
ATOMIC MASS

2x(40) + 1x(98) - 1x(142) + 2x(18)

MASS

GAS!

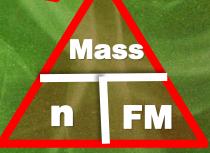
What is the volume occupied by 2moles of hydrogen gas, (assume molar volume of 24 litres/mol)



GAS!

The volume occupied by 2moles of hydrogen gas, (assume molar volume of 24 litres)

48 litres



GAS!

The volume occupied by 2moles of hydrogen gas, (assume molar volume of 24 litres)

48 litres

Mass?

GAS!

The volume occupied by 2moles of hydrogen gas, (assume molar volume of 24 litres)

48 litres

49

Mass n FM

(SUGAR)

SUCROSE

CARBON \longrightarrow 12 mol x 12.01g/mol = 144.12 g

HYDROGEN → 22 mol x 1.008g/mol = 22.176 g

OXYGEN \rightarrow 11 mol x 16.00g/mol = 171 g

MASS OF 1 mol SUCROSE = 342.296 g

REACTANTS AND PRODUCTS

$$C_{12}H_{22}O_{11} + O_2 = CO_2 + H_2O$$
 \uparrow

REACTANTS

PRODUCTS

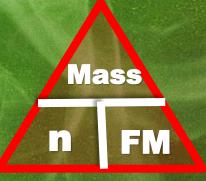
Digesting sugar!

EQUATION BALANCING

 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O$

Digesting sugar!

 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$


Only 5g of sucrose in cake

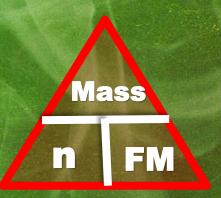
How much oxygen do I need to burn off the 5g of sugar?

 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

1mole of sucrose 12moles of oxygen

 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

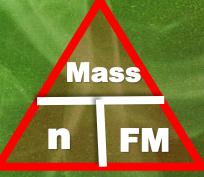
SUCROSE


CARBON

 \rightarrow 12 mol x 12.01g/mol = 144.12 g

HYDROGEN \rightarrow 22 mol x 1.008g/mol = 22.176 g

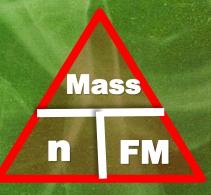
OXYGEN \rightarrow 11 mol x 16.00g/mol = 171 g


MASS OF 1 mol SUCROSE = 342.296 g

 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

SUCROSE = 342.296 g

12 MOLES OF O_2 = $(12 \times 32) = 384g$

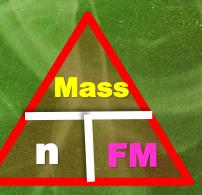


 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

SUCROSE = 342.296 g

12 MOLES OF O_2 = $(12 \times 32) = 384g$

Only 5g of sucrose in cake

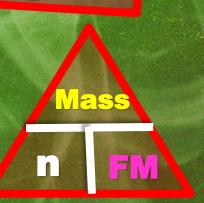


 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

SUCROSE = 342.296 g

12 MOLES OF O_2 = $(12 \times 32) = 384g$

n = 5g/342.296 = 0.015 moles of sucrose


 $C_{12}H_{22}O_{11} + 12 O_2 = 12 CO_2 + 11 H_2O_2$

0.015 moles of sucrose

(12 x 0.015) moles of oxygen

 $mass = (12 \times 0.015) \times 32$

= 5.769

IMITING REACTANT

4 Tires

2 Headlights

I Car

Say We Have:

14 headlights

Enough headlights to make 7 cars

20 tires

Enough tires to make 5 cars ← Limiting "Reactant"

metal powder

"air"

Aluminum Oxide

4 Al + 3O₂ → 2Al₂O₃

Eventually, you will run out of aluminum as the reaction proceeds forward

metal powder

"air"

Aluminum Oxide

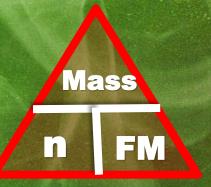
4 Al + 3O₂ → 2Al₂O₃

 $\frac{4NH_3}{4} + \frac{50}{2} \rightarrow 4NO + 6H_2O$

34g

32g

LIMITING REACTANT ?


 $\frac{4NH_3 + 50_2}{2} \rightarrow 4NO + 6H_2O$

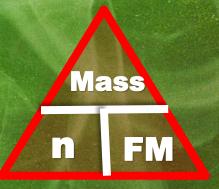
349

FM = 17

32g

FM = 32

 $\frac{4NH_3 + 50_2}{2} \rightarrow 4NO + 6H_2O$


349

9

EM = 17

FM = 32

n = mass/FM = 34/17 = 2

 $\frac{4NH_3}{4} + \frac{50}{2} \rightarrow 4NO + 6H_2O$

349

 $n_{\rm A} = 17$

32g

FM = 32

n = 32/32 = 1

 $\frac{4NH_3 + 50_2}{2} \rightarrow 4NO + 6H_2O$

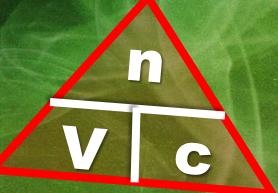
2mole

1mole

NOT ENOUGH O₂

 $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$

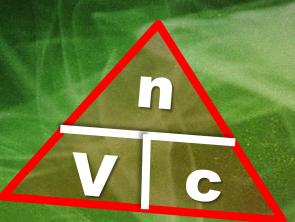
25 cm³ 0.1 mol l⁻¹


0.27 g

LIMITING REACTANT ?

 $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$

25 cm³ 0.1 mol l⁻¹


0.27 g

$$C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$

25 cm³ 0.1 mol l⁻¹

0.27 g

$$n = 0.025 I \times 0.1 \text{ mol } I^{-1} = 0.0025 \text{ moles}$$

 $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$

25 cm³ 0.1 mol l⁻¹ 0.0025 moles

0.27 g

0.27g n = 253.8 g/mol

0.001 moles

$$C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$

25 cm³ 0.1 mol l⁻¹ 0.0025 moles

0.27 g 0.001 moles

Ratio of reactants = required

1mol

1mol

$$C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$

25 cm³ 0.1 mol l⁻¹

0.27 g

Ratio of reactants = available

0.0025mol

0.001mol

 $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$

0.0025mol

0.001mol

I need a ratio of 1 to 1 to make reaction happen.

NOT ENOUGH I₂

Percentage yield

efficiency of a reaction

mass of the theoretical product

Percentage Yield EXAMPLE

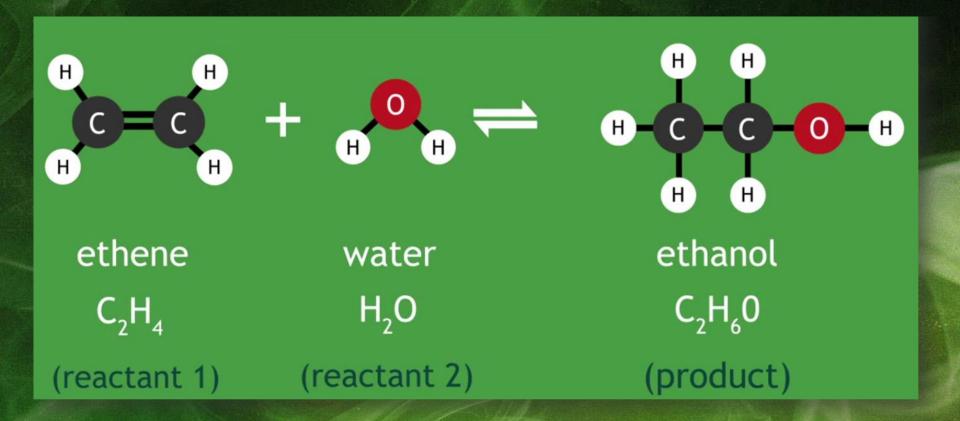
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

- If we burned 16g of methane (CH₄), we would expect there to be 44g of carbon dioxide (CO₂) produced.
 - This is because 1 mole of methane (gfm=16g) ought to produce 1 mole of carbon dioxide (gfm=44g)

Percentage Yield EXAMPLE

BUT!

Sometimes less than the expected is actually synthesised.


If only 17g of the expected 44g of carbon dioxide was produced from the methane burned, what would the PERCENTAGE YIELD be?

formula of percentage yield

actual yield of products formed

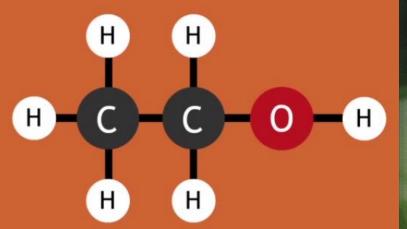
X 100

theoretical yield of products formed

28g

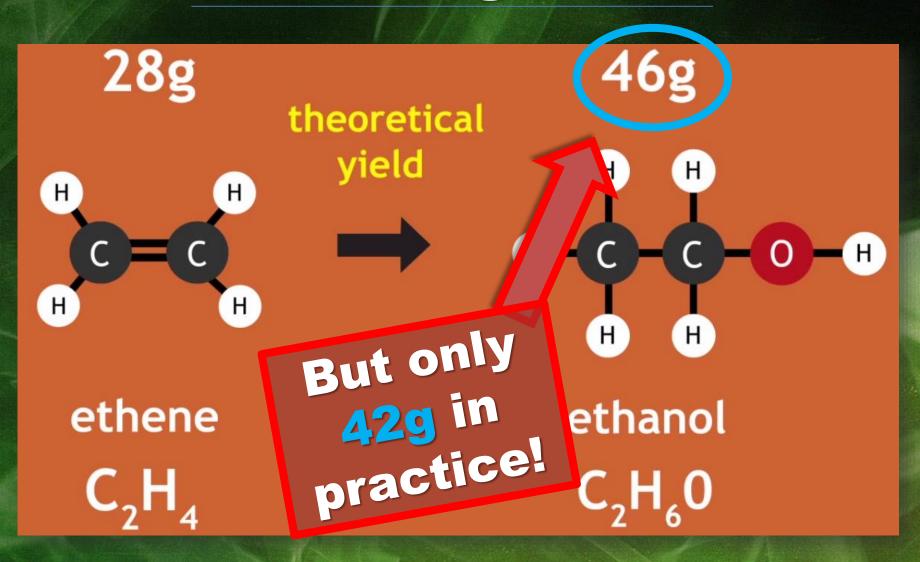
Н

Н


Н

theoretical

yield


46g

ethene

ethanol

 C_2H_60

practical yield

42

 \rightarrow

percentage (%)

theoretical yield

46

formula of percentage yield

practical yield of products formed

theoretical yield of products formed

x 100 = percentage yield

practical $yield \rightarrow percentage (\%) \rightarrow yield$ 42 theoretical 46

formula of percentage yield

 $0.913 \times 100 = 91.3\%$

actual yield

0.740 moles

theoretical yield

0.755 moles

formula

actual yield

theoretical yield

x 100 = Percentage yield

actual yield

0.740 moles

theoretical yield

0.755 moles

formula

0.987 x 100 =

98%

Why is the yield not 100%?

There are a variety of reasons why each reaction does not produce a 100% yield of the product:

- not all the reactants being used up
- products escaping the reaction vessel
- physical loss of products during transfer

HOW to increase % yield?

Alter the reaction conditions:

- Temperature
 - Pressure
 - Catalyst
- Use a reactant in excess

OR

Use a different chemical reaction

Atom Economy

```
reactant + reactant B product + waste
```

Usually only interested in product.

Atom Economy

```
reactant + reactant B product + waste
```

Usually only interested in product.

Atom economy = % of useful product

Atom Economy

reactant
$$+$$
 reactant \rightarrow product $+$ waste

the atom economy

less waste is produced

1) Reaction

2) Equation

3) Molecular masses

atom economy the mass of the desired products

mass of all products

x 100

the mass of the useful product

mass of all products

$$x 100 = atom_{economy}$$

(product) (product) (product) (reactant) (reactant) + NaCl + NaOCl $H_{2}0$ hydrazine sodium sodium water ammonia hypochlorite chloride (34)(32)(74.5)(58.5)(18)

4

$$\frac{32}{}$$
 x 100 = 29.5%

108.5

(product) (reactant) (reactant) (product) (product) + NaCl + **NaOCI** H_20 2NH₃ hydrazine sodium sodium water ammonia hypochlorite chloride (34)(32)(74.5)(58.5)(18)

Atom Economy Example

Calculate the atom economy for this reaction where hydrogen is the desired product.

 $CH_4 + H_2O \rightarrow CO + 3H_2$

Step 1: Calculate mass of desired product
Step 2: Calculate total mass of products/reactants
Step 3: Divide the answer from Step 1 by the
answer from Step 2 and multiply by 100.

Answer:

Atom Economy Example

Calculate the atom economy for this reaction where hydrogen is the desired product.

 $CH_4 + H_2O \rightarrow CO + 3H_2$

Step 1: Calculate mass of desired product
Step 2: Calculate total mass of products/reactants
Step 3: Divide the answer from Step 1 by the
answer from Step 2 and multiply by 100.

Answer: $6/34 \times 100 = 17.65\%$

Calculate the atom economy for:

• $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$

Calculate the atom economy for:

• $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$

64.18%

Calculate the atom economy for:

• $4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$

4

Calculate the atom economy for:

• $4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$

56.45%

Calculate the atom economy for:

•
$$C_2H_4 + CH_3CO_2H + \frac{1}{2}O_2 \rightarrow C_2H_3O_2CCH_3 + H_2O$$

R

Calculate the atom economy for:

•
$$C_2H_4 + CH_3CO_2H + \frac{1}{2}O_2 \rightarrow C_2H_3O_2CCH_3 + H_2O$$

82.69%

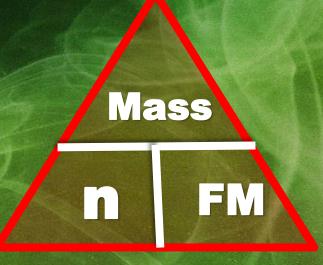
Propanol, C₃H₇OH, can be dehydrated to produce propene, C₃H₆, using excess sulfuric acid.

Propoxypropane, C₃H₇OC₃H₇, and water are also produced.

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$ Mass of Mass of
one mole= 60g one mole = 42g

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g


Mass of one mole = 42g

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

Theoretical yield, in kg, of propene from 270 kg propanol?

FM

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

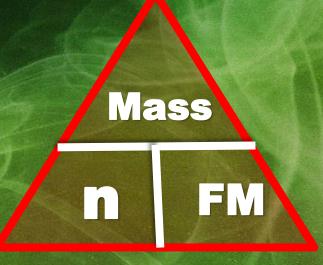
Mass of one mole= 60g

Mass of one mole = 42g

$$n = \frac{270}{}$$

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g


Mass of one mole = 42g

$$n = \frac{4.5}{1}$$

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

Theoretical yield, in kg, of propene from 270 kg propanol?

Mass =

n x FM

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

Theoretical yield, in kg, of propene from 270 kg propanol?

4.5 $C_3H_7OH \rightarrow 2.25 C_3H_6$

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

Theoretical yield, in kg, of propene from 270 kg propanol?

Mass = ?

n = 2.25

FM = 42g

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

Theoretical yield, in kg, of propene from 270 kg propanol?

mass = 94.5kg

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

an actual yield of propene = 21kg %Yield?

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

an actual yield of propene = 21kg %Yield?

actual yield

theoretical yield x 100

 $4C_3H_7OH \rightarrow 2C_3H_6 + C_3H_7OC_3H_7 + 3H_2O$

Mass of one mole= 60g

Mass of one mole = 42g

an actual yield of propene = 21kg %Yield?