C hemistry In society

Mark Dewar

¹⁶ O bjectives

1.REDOX

2. CHROMATOGRAPHY

3. VOLUMETRIC ANALYSIS

REDOX REACTION

REDUCTION-OXIDATION REACTIONS

Redox is a portmanteau of REDUCTION & OXIDATION

REDUCTION

A reduction reaction is a GAIN of electrons. If a substance is being reduced it is gaining electrons

An oxidation reaction is a LOSS of electrons. If a substance is being oxidised it is losing electrons.

Oxidation
Is
Loss;
Reduction
Is
Gain

OIL OXIDATION IS LOSS OF ELECTRONS

RIG REDUCTION IS GAIN OF ELECTRONS

OXIDATION STATE

When bonds break who gets the electrons?
The atoms' oxidation state / oxidation number is the number of electrons assigned to them.

OXIDATION STATE

How do we figure out the oxidation numbers for the elements?

Rule one

If the atom exists in elemental form the oxidation number is zero!

Rule one

Atoms have a neutral charge so no sharing electrons with itself.

Rule two

MONATOMIC ION

OXIDATION NUMBER = CHARGE OF ION

lons have an oxidation number equal to its charge.

Rule three

Oxygen always has an oxidation number of -2!

OXYGEN

OXIDATION STATE = -2

H₂0

 10^{-2}_{3}

Rule four

HYDROGEN

Hydrogen always has an oxidation number of +1!

OXIDATION STATE = +1

H₂0

HCI

Rule five

FLUORINE

OXIDATION STATE = -1

Fluorine always has an oxidation number of -1!

ΗF

CaF₂

RULE SIX

Other atoms get the charge they prefer, as long as the sum of oxidation numbers for all atoms = the total charge on the particle.

RULE SIX
Other atoms get the charge they
prefer, as long as the sum of oxidation
numbers for all atoms = the total
charge on the particle.

ELEMENT	"CHARGE"
OXYGEN	(3 X -2)
IRON	?
	0

RULE SIX

Other atoms get the charge they prefer, as long as the sum of oxidation numbers for all atoms = the total charge on the particle.

ELEMENT	"CHARGE"
OXYGEN	$(3 \times -2) = -6$
IRON	$(2 \times +3) = 6$
	0

POLYATOMICION

Other atoms get the charge they prefer, as long as the sum of oxidation numbers for all atoms = the total charge on the particle.

ELEMENT	"CHARGE"
Chlorine	?
Oxygen	?
	?

RULE SIX

Other atoms get the charge they prefer, as long as the sum of oxidation numbers for all atoms = the total charge on the particle.

ELEMENT	"CHARGE"
Chlorine	+5
Oxygen	$(3 \times -2) = -6$
	-1

$${}^{\pm 0}_{N_2} + 3 {}^{\pm 0}_{N_2} \rightarrow 2 {}^{-3}_{NH_3}$$

Able to work out which elements are being oxidised and which are being reduced through oxidation states.

$${}^{\pm 0}_{N_2} + 3 {}^{\pm 0}_{H_2} \rightarrow 2 {}^{-3}_{NH_3}^{+1}$$

Nitrogen & Hydrogen reactants are elemental so oxidation number = 0

$${}^{\pm 0}_{N_2} + 3 {}^{\pm 0}_{H_2} \rightarrow 2 {}^{-3}_{N_3} {}^{+1}_{A}$$

Hydrogen always has an oxidation number = +1

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

Nitrogen will have -3 to balance charge on ammonia.

Hydrogen is oxidised (loss of e⁻)

Nitrogen is reduced (gain of e⁻)

$$3H_2 \rightarrow 2NH_3 + 3e^-$$

$$N_2 + 3e^- \rightarrow 2NH_3$$

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

Hydrogen is oxidised (loss of e⁻)

Nitrogen is reduced (gain of e⁻)

Reaction

$$H_2 + F_2 \rightarrow 2HF$$

Half Reactions

$$H_2 \rightarrow 2H^+ + 2e^ F_2 + 2e^- \rightarrow 2F^-$$

For some reactions to fully understand what is being oxidised and reduced we need to write half-reactions.

$$Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + 2H_2(g)$$

For half-reactions first work out the oxidation numbers.

$$0 + 1 - 1 + 2 - 1 = 0$$

$$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + 2H_2(g)$$

Mg and H_2 are elemental so oxidation number = 0

$$0 + 1 - 1 + 2 - 1 = 0$$

$$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + 2H_2(g)$$

H₂ always has an oxidation number = +1

$$0 + 1 - 1 + 2 - 1 = 0$$

$$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + 2H_2(g)$$

CI will therefore be -1 in order to balance the charge.

$$0 + 1 - 1 + 2 - 1 = 0$$

$$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + 2H_2(g)$$

To balance the charge on the product side the (2x) -1 charge of the CI will balance with the Mg; so Mg has oxidation number = +2

The Mg is oxidised as it loses e The Hydrogen is reduced as it gains e

Oxidation

$$Mg(s) \longrightarrow MgCl_2(aq) + 2e^{-}$$

Reduction

$$2HCl(aq) + 2e^{-} \longrightarrow 2H_2(g)$$

Half-reactions include the electrons!

 $Mn(s) + Pb(NO_3)_2(aq) \rightarrow Mn(NO_3)_2(aq) + Pb(s)$

- Oxidation numbers
- Oxidation / Reduction

Half reactions

Work out the half-reactions!

$$Mn(s) + Pb(NO_3)_2(aq) \rightarrow Mn(NO_3)_2(aq) + Pb(s)$$
0 +5 -6 +5 -6 +2 (-2)

 $Mn(s) + Pb(NO_3)_2(aq) \rightarrow Mn(NO_3)_2(aq) + Pb(s)$

Oxidation

 $Mn(s) \rightarrow Mn(NO_3)_2 (aq) + 2e^{-1}$

(Mn is the Reducing agent)

Reduction

 $Pb(NO_3)_2$ (aq) + $2e^- \rightarrow Pb$ (s)

(Pb is the Oxidizing agent)

REDOX-REACTIONS

- 1. Balance all atoms on either side of equation except hydrogen & oxygen.
- 2. To balance oxygen add water to the oxygen deficient side.
 - 3. To balance <u>hydrogen</u> add <u>H</u>⁺ or to deficient side for <u>acid</u> conditions. For basic conditions add OH- to BOTH
 - sides, to neutralize H⁺.
 - 4. Balance the charge on either side by adding e. make sure charge is equal on both sides!

Acidified MnO₄

Fe²⁺

REDOX EQUATION?

Colourless solution contains Mn²⁺ and Fe³⁺

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

(Fe²⁺ is the Reducing agent)

 $MnO_4^- \rightarrow Mn^{2+}$ Purple \rightarrow colourless

(MnO₄ is the Oxidizing agent)

Redox $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ $MnO_4 \rightarrow Mn^{2+}$

1. Balance all atoms on either side of equation except hydrogen & oxygen.

Redox $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ $MnO_4^- \rightarrow Mn^{2+} + 4H_2O$

2. To balance oxygen add water to the oxygen deficient side.

Redox $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ $MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$

3. To balance <u>hydrogen</u> add H⁺ to deficient side.

$\begin{array}{c} \text{Redox} \\ \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^{-} \\ \text{MnO}_{4^{-}} + 8\text{H}^{+} + 5\text{e}^{-} \rightarrow \text{Mn}^{2+} + 4\text{H}_{2}\text{O} \end{array}$

4. Balance the charge on either side by adding e. make sure charge is equal on both sides!

Redox $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-}$ $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

To cancel out the electrons for the redox the iron equation must be multiplied by 5.

Redox

 $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-}$

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

 $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

$$5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-1}$$

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

CHARGES

1- 8+ 10+
$$\rightarrow$$
 2+ 15+ 0

For basic conditions...

 $3H_2O + 5CIO_3^- + 3I_2 \rightarrow 5CI^- + 6IO_3^- + 6H^+$

Add OH- to both sides to neutralize H+

For <u>basic</u> conditions...

$$3H_2O + CIO_3^- + I_2 \rightarrow CI^- + 2IO_3^- + 6H^+$$

For basic conditions...

3
$$\mu_2$$
0 + CIO₃⁻ + I₂ → CI⁻ + 2IO₃⁻ + 6 μ 1 + 60 μ 1

Technique to <u>separate</u> components of a mixture

Paper chromatography

Reference spots are dipped in solvent and over time the solvent moves up paper and separating components based on solubility.

Paper chromatography

Chromatogram

Stationary phase

Mobile phase

Paper is stationary phase: doesn't move

Solvent is mobile phase: does move

Paper chromatography

The more soluble the component the further it travels up the stationary phase.

Paper chromatography

Retention factor (R_f)

Rf = Distance travelled by a component
Distance travelled by the solvent

Paper chromatography

Relative solubility

less soluble — > Smaller R_f value

TITRATION

METHOD FOR DETERMINING THE CONCENTRATION OF A SOLUTE IN A SOLUTION.

TITEL LOW mL of acid solution

- 1. Easy to carry out
- 2. Versatile & reliable
- 3. Many reagents are cheap
- 4. Vast range of applications

For a titration:

- 1. The reaction must proceed according to a definite chemical equation with NO SIDE REACTIONS.
- Must be Not reversible.
- There must be some method of detecting the equivalence point - an indicator. 4.
- The reaction should be <u>rapid!</u>